EXTENDED ANALYSIS OF THE $\nu_4/\nu_7/\nu_{10}$ BANDS OF 12C$_2$H$_4$: LINE STRENGTHS, WIDTHS, AND SHIFTS

O. V. GROMOVA, E. S. BEKHTEREVA, N. I. RASPOPOVA, O. N. ULENIKOV, Research School of High-Energy Physics, National Research Tomsk Polytechnic University, Lenin av., 30, 634050, Tomsk, Russia; S. BAUERECKER, Institut für Physikalische und Theoretische Chemie, Technische Universität Braunschweig, D - 38106, Braunschweig, Germany

The high-resolution infrared spectra of 12C$_2$H$_4$ were analyzed in the region of 600 - 1200 cm$^{-1}$, where $\nu_4/\nu_7/\nu_{10}$ bands are located. More than 2700 line strengths (300, 1400 and 1000 for ν_4, ν_7 and ν_{10}, respectively) were determined from the fit of their line shapes with a Hartmann-Tran profile ($J_{\text{max.}} = 30$ and $K_{\text{max.}} = 10$ for ν_4, $J_{\text{max.}} = 40$ and $K_{\text{max.}} = 17$ for ν_7, $J_{\text{max.}} = 35$ and $K_{\text{max.}} = 15$ for ν_{10}). These data were used in the fit of the effective dipole moment parameters and six such parameters were obtained which reproduce the strengths of the 2700 initial lines with the $d_{rms} = 2.5\%$. Self-broadening and self-shift coefficients were determined from the multi-spectrum analysis for sets of lines ($J K_a = K'_a K'_c$) ← ($J' K'_a K'_c$), $K_a = 9,15,12$ (in general, more than 900 lines for determination of self-broadening coefficients and above 500 lines for determination of self-shift coefficients).

This research was funded by RFBR according to the research project No. 18-02-00819 A.