ANALYTICAL COMPUTER CALCULATIONS FOR POLYATOMIC MOLECULES: ANHARMONIC, RESONANCE INTERACTION, RO–VIBRATIONAL, CENTRIFUGAL DISTORTIONAL PARAMETERS FOR ASYMMETRIC TOP MOLECULES

O. N. ULENIKOV, A. S. ZHILYAKOV, E. S. BEKHTEREVA, O. V. GROMOVA. Research School of High-Energy Physics, National Research Tomsk Polytechnic University, Lenin av., 30, 634050, Tomsk, Russia

Operator perturbation theory in the projector formulation was used as the basis for deriving general formulas which take into account possible as regular and accidental resonance interactions in asymmetric top molecules. MAPLE codes have been created which allowed us to derive in the analytical form
1) harmonic parameters $x_{\lambda\mu}$ and $y_{\lambda\mu\nu}$ in the expression

$$E_{v_1...v_n} = \sum_{\lambda} \omega_{\lambda} \left(v_{\lambda} + \frac{1}{2} \right) + \sum_{\lambda,\mu \geq \lambda} x_{\lambda\mu} \left(v_{\lambda} + \frac{1}{2} \right) \left(v_{\mu} + \frac{1}{2} \right) + \sum_{\lambda,\mu \geq \lambda,\nu \geq \mu} y_{\lambda\mu\nu} \left(v_{\lambda} + \frac{1}{2} \right) \left(v_{\mu} + \frac{1}{2} \right) \left(v_{\nu} + \frac{1}{2} \right);$$

2) parameters F_0 and f_λ for different vibrational resonance interactions (Fermi, Darling-Dennison, etc.) $\sim [F_0 + \sum_{\lambda} f_\lambda b_\lambda]$, where b_λ depend on the vibrational quantum numbers v_λ;

3) ro–vibrational coefficients α_{λ}^β and $\gamma_{\lambda\mu}^\beta$ in the expression

$$B_\beta = B_\beta^0 - \sum_{\lambda} \alpha_{\lambda}^\beta \left(v_{\lambda} + \frac{1}{2} \right) + \sum_{\lambda,\mu \geq \lambda} \gamma_{\lambda\mu}^\beta \left(v_{\lambda} + \frac{1}{2} \right) \left(v_{\mu} + \frac{1}{2} \right);$$

4) centrifugal distortion parameters Δ_i^e and δ_i^k in the expression

$$\Delta_i = \Delta_i^e + \sum_{\lambda} \delta_i^k \left(v_{\lambda} + \frac{1}{2} \right).$$

In the present version, results are obtained on the basis of the operator perturbation theory up to the fourth order and take into account sixth order parameters of the intramolecular potential function.

This research was funded by the Russian Science Foundation, project 18-12-00058.

p-number: p230 Submitted on Sat Jun 1 15:45:55 CEST 2019