SELF-BROADENING COEFFICIENTS AND LINE INTENSITIES IN THE ν_6 BAND OF METHYL CHLORIDE IN THE 10 μm REGION

O. FATHALLAH, N. DRIDI, H. AROUI, Laboratoire de Spectroscopie et Dynamique Moléculaire, Université de Tunis, Ecole Nationale Supérieure d’Ingénieurs de Tunis, 5 Avenue. Taha Hussein, Tunis, Tunisia; L. MANCERON, Synchrotron Soleil Ligne AILES, BP 48, 91192 Cedex Gif-sur-Yvette, France and MONARIS, UMR 8233 CNRS-UPMC, case 49, 4 place Jussieu, 75252 Cedex Paris, France; M. ROTGER, GSMA, UMR CNRS 7331, Université de Reims Champagne Ardenne, Moulin de la Housse B.P. 1039, F-51687, Cedex Reims, France

The halocarbons derivatives of methane contribute to the destruction of the ozone layer and the greenhouse effect1. The most abundant of these halocarbons is methyl chloride (CH$_3$Cl) with an estimated lifetime in the stratosphere of about 1 to 3 years2. This molecule is the main source of natural chlorine in the atmosphere and was included in the global stratospheric chlorine budget3.

High-resolution spectroscopy studies are necessary to achieve accurate concentration of this gas. The results of such studies is of great interest to atmospheric scientists to enrich databases4.

We performed the first systematic measurements of pressure broadening coefficients and line intensities of ro-vibrational absorption transitions of the ν_6 perpendicular band of 12CH$_3$ 35Cl and 12CH$_3$ 37Cl isotopes. The spectra were recorded in the spectral region between 920 and 1130 cm$^{-1}$ with a high-resolution Fourier transform spectrometer.

A multi-pressure fitting technique was used to fit a series of seven spectra at pressures of CH$_3$Cl ranging from 1.02 to 10.24 mbar to retrieve line intensities of about 2000 transitions with $3 \leq J \leq 55$ and $0 \leq K \leq 12$. The rotational dependencies of the self-broadening coefficients have been clearly observed and modeled using a second-order empirical polynomial. The average accuracies have been estimated to be about 4 and 5% for line intensities and self-broadening respectively.

The rotational dependencies of line intensities were analyzed and used to derive the transition dipole moments squared for each line. The analysis of these moments using the theoretical model of Tarrago et al.5 allows us to derive a consistent set of line

2Brown AT, Volk CM, Schoeberl MR, Boone CD., Bernath PF. Stratospheric lifetimes of CFC-12, CCl$_4$, CH$_4$, CH$_3$Cl and N$_2$O from measurements made by the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS), Atmos. Chem. Phys., 13, 6921-50 (2013).

intensity parameters such as vibrational transition moments, band intensities as well as Herman-Wallis coefficients. The results were compared with previous works and with HITRAN databases.