METHYL INTERNAL ROTATION AND 14N QUADRUPOLE COUPLING IN 2-METHYLPYRROLE AND 2,5-DIMETHYL PYRROLE: A COMPARATIVE STUDY

T. NGUYEN, H. V. L. NGUYEN, I. KLEINER, Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Université Paris-Est Créteil, Université de Paris, Institut Pierre Simon Laplace (IPSL), 61 avenue du Général de Gaulle, 94010 Créteil Cedex, France; C. DINDIC, W. STAHL, Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52074 Aachen, Germany

The torsional barriers of methyl groups attached to aromatic compounds are hard to predict. In addition, studying the 14N quadrupole hyperfine structure gives us information on the electric field gradient at the site of the 14N nucleus and consequently on the nature of its chemical bonds. All these reasons motivated us to investigate two methyl derivatives of pyrrole, 2-methylpyrrole (2MP) and 2,5-dimethylpyrrole (25DMP), using a combination of quantum chemical calculations and Molecular Jet Fourier-Transform MicroWave (MJ-FTMW) spectroscopy.

The microwave spectra of 2MP and 25DMP were recorded using two MJ-FTMW spectrometers operating in the frequency ranges from 2.0 to 26.5 GHz1 and 26.5 to 40.0 GHz2. The splittings arising from the internal rotation of the methyl groups as well as the 14N quadrupole hyperfine structure were successfully assigned. All spectra of 2MP and 25DMP are presently analyzed using the programs XIAM3 and BELGI-C_s-hyperfine for 1 top4 and 2 tops, respectively. From the splittings due to the internal rotation of the methyl groups, the barrier heights of the methyl group in 2MP and 25DMP can be obtained. The 14N quadrupole coupling constants are accurately determined.

In both cases, 2MP and 25DMP, the methyl groups are adjoining the nitrogen atom, therefore a comparison of the respective V_3 values can be made. Due to the C_s symmetry of ring systems, the c axes are principal axes of both the inertia and the quadrupole coupling tensor, and the values of χ_{cc} could be directly compared with other aromatic five-membered rings. Different signs of the χ_{cc} constant can be explained by the different chemical bond situations.

p-number: p034 Submitted on Mon May 27 16:21:15 CEST 2019