SUBMILLIMETER WAVE SPECTROSCOPY AND ISM SEARCH FOR PROPIONIC ACID

L. MARGULES, R. A. MOTIYENKO, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molecules, University of Lille, CNRS, F-59000 Lille, France; V. ILYUSHIN, O. DOROVSKAYA, E. A. ALEKSEEV, Radiospectrometry Department, Institute of Radio Astronomy of NASU, Kharkov, Ukraine; E. R. ALONSO, L. KOLESNIKOVA, Grupo de Espectroscopia Molecular, Lab. de Espectroscopia y Bioespectroscopia, Unidad Asociada CSIC, Universidad de Valladolid, Valladolid, Spain; J. CERNICHARO, Instituto de Fisica Fundamental, CSIC, Madrid, Spain; J.-C. GUILLEMIN, UMR 6226 CNRS - ENSCR, Institut des Sciences Chimiques de Rennes, Rennes, France

Two compounds with a C$_2$H$_4$O$_2$ formula have been detected in the Interstellar Medium (ISM): acetic acid (CH$_3$CO$_2$H) and methyl formate (CH$_3$OC(O)H), the latter being thermodynamically less stable than the former but more abundant. Among the higher homologues with a C$_3$H$_6$O$_2$ formula where a hydrogen atom in C$_2$H$_4$O$_2$ has been replaced by a CH$_3$ group, two compounds have already been detected: ethyl formate (EtOC(O)H) and methyl acetate (CH$_3$OC(O)CH$_3$). The higher thermodynamic stability of another isomer, the propionic acid (EtCO$_2$H), pushed us to record its rotational spectrum, since this compound has a high probability of being present in the ISM. The methyl top internal rotation should be taken into account, therefore the analysis is performed using RAM36 code1. The spectroscopic results and its search in ISM will be presented. This work was supported by the CNES and the Action sur Projets de l’INSU, PCMI

1Ilyushin, V.V. et al; J. Mol. Spectrosc. 259, (2010) 26

p-number: p290 Submitted on Wed Jun 19 01:25:09 CEST 2019