MICROWAVE SPECTROSCOPIC AND QUANTUM CHEMICAL INVESTIGATIONS ON ACETYLTHIOPHENES AND 2-ACETYLFLURAN

C. DINDIC, M.G. BARTH, W. STAHL, Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52074 Aachen, Germany; H.V.L. NGUYEN, Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), CNRS UMR 7583, Université Paris-Est Créteil, Université de Paris, 61 avenue du Général de Gaulle, F 94010 Créteil cedex, France

It is known that the torsional barrier of an acetyl methyl group strongly depends on the substituent attached to the other side of the carbonyl group, especially if double bonds or π conjugated systems are present. Although several molecules of this type have been investigated, such as allyl acetone1, methyl vinyl ketone2 or 2-acetyl-5-methylfurane3, no apparent trends for the torsional barrier of the acetyl methyl group have been found. This work will present the influence of sulfur- and oxygen-containing five membered aromatic rings on the torsional barrier of the acetyl methyl group.

The microwave spectra of 2-acetylthiophene, 2-acetylfuran and 2-acetyl-4-methylthiophene were recorded using a pulsed molecular jet Fourier transform microwave spectrometer operating in the frequency range from 2 to 26.5 GHz. Conformational analyses carried out at the MP2/6-311++G(d,p) level of theory yielded two stable conformers (syn and anti) for all three molecules. While the syn-conformers of the thiophenes are energetically more stable, the anti-conformer is more stable in the case of 2-acetylfuran. This shows that the conformational stability depends on the hetero atom in the ring.

Both, the syn- and the anti- conformers were assigned in the microwave spectra of 2-acetylthiophene and 2-acetylfuran. The torsional barriers of the acetyl methyl group in syn- and anti-2-acetylthiophene are 333.602(14) cm-1 and 298.600(14) cm-1, respectively. The respective barriers for syn- and anti-2-acetylfuran are 238.406(49) cm-1 and 319.417(24) cm-1.

In 2-acetyl-4-methylthiophene a second rotor is present in the system. The assignment of the spectrum is in progress. Currently, the (00), (01) and (10) species of the syn-conformer have been assigned.