FIRST DETECTION OF THE RADIOACTIVE MOLECULE 26AlF AND ITS SPECTROSCOPIC ASPECTS

A. A. BREIER, G. W. FUCHS, T. F. GIESEN, Laborastrophysik, Universität Kassel, Kassel, Germany; J. GAUSS, Institut für Physikalische Chemie, Johannes Gutenberg-Universität Mainz, Mainz, Germany; T. KAMIŃSKI, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA

The observation of radioactive isotopes, like 26Al, gives insights into the nucleosynthesis processes of stellar cores\(^1\). Until now, characteristic γ-photons released during radioactive decay of the 26Al nucleus have been used to record the 26Al-spatial distribution on a large scale\(^2\), but due to the limited detection sensitivity this method generally fails to identify individual stellar objects on a local scale. An alternative approach to the detection of 26Al is the spectroscopic observation of molecules containing the radioactive isotope, like 26AlF. These molecules can be formed in the outer atmosphere of late-type stars. Submillimeter-telescope facilities, like ALMA, can identify these species via their rotational spectra.

In this work, the first astronomical detection of a radioactive molecule, 26AlF, in a stellar source, CK Vul, is reported\(^3\). A global data analysis, including data of the stable 27AlF molecule taken from the literature, in combination with astronomical data of 26AlF, reveals the molecular structure beyond the Born-Oppenheimer (BO) limit, resulting in experimentally derived BO correction coefficients of AlF for the first time. Further candidate stellar sources of 26Al will be discussed.
