ACCURATE CAVITY RING-DOWN SPECTROSCOPY OF D₂ AND COMPARISON WITH AB INITIO CALCULATIONS

S. WÓJTEWICZ, P. WCISŁO, H. JÓŻWIAK, Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland; R. GOTTI, D. GATTI, M. LAMPERTI, M. MARANGONI, Physics Department of Politecnico di Milano and IFN-CNR, Via Gaetano Previati 1/C, Lecco 23900, Italy; F. THIBAULT, Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, F-35000 Rennes, France; P. JANKOWSKI, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Torun, Poland; K. SZALEWICZ, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA; K. PATKOWSKI, Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA; J. KOMASA, M. PUCHALSKI, Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznan, Poland; K. PACHUCKI, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland

Nowadays highly refined theoretical determinations of rovibrational transition energies of molecular hydrogen can reach the remarkable level of 2×10^{-5} cm$^{-1}$.\(^1\) This opens a promising way to test quantum electrodynamics for molecules as well as to study new physics beyond the Standard Model.\(^2\) Nonetheless, these advances are hindered by the difficulty of modeling line shapes of molecular hydrogen due to very pronounced collisional effects.\(^3\)

We present and discuss highly accurate measurements of the quadrupole transitions of the D$_2$ 2 − 0 band. Self-perturbed spectra were collected with a cavity ring-down spectrometer linked to an optical frequency comb referenced to a GPS-disciplined Rb clock.\(^4\) The line-shape analysis was performed using the Hartmann-Tran profile as well as the speed-dependent billiard ball profile. To describe the collisional line-shape effects and mitigate the collisional systematics we performed ab initio quantum scattering calculations obtaining the differences between theoretical and experimental values of the line positions of about 1.5 MHz. The uncertainty of the measured line positions is about 700 kHz, which in the case of the S(3) and S(4) transitions represents a 50-fold improvement compared to the previously available data.\(^5\)
